Software Fault Tolerance for
High-Performance Space Applications

Michael Turmon, Robert Granat, and Daniel S. Katz
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109
tel +1-818-393-5370 fax +1-818-393-5244
{turmon,granat,daniel katz}@jpl.nasa.gov

Abstract

We describe and test a software approach to overcoming radiation-
induced errors in spaceborne applications running on commercial off-
the-shelf components. The approach uses checksum methods to vali-
date results returned by a numerical subroutine operating subject to
unpredictable errors in data. We can treat subroutines that return re-
sults satisfying a necessary condition having a linear form: the check-
sum tests compliance with this necessary condition. These checksum
schemes are called algorithm-based fault tolerance (ABFT). We dis-
cuss the theory and practice of setting numerical tolerances to separate
errors caused by a fault from those inherent in finite-precision numer-
ical calculations. We test both the general effectiveness of the linear
ABFT schemes we propose, and the correct behavior of our parallel
implementation of them.

Keywords: ABFT, checksum, parallel, space, software.
Submission category: regular papers.

Word count: approximately 7000 words.

Contact author: Michael Turmon.

This material has been cleared through author affiliations.

1 Introduction

We first outline the general outlook and goals of the spaceborne computing
effort motivating this work, and then we describe the detailed contents of

this paper.

1.1 Overview

Within NASA's High Performance Computing and Communications (HPCC)
Program. the Remote Exploration and Experimentation (REE) project (7]
at the Jet Propulsion Laboratory (JPL) will enable a new type of scientific
investigation by bringing commercial supercomputing technology into space.
Transfer of such powerful computational facilities to space will permit highly
antonomons missions with more flexibility and on-board analysis capability,
mitigating control latency due to fundamental light-time delays, as well as
inevitable bandwidth limitations in the link between spacecraft and ground
stations. To do this, REE needs not to develop one computational platform,
but to define and demonstrate a process for rapidly transferring commercial
high-performance computing technology into ultra-low power, fault-tolerant
architectures for space.

Traditionally. spacecraft components have been radiation-hardened to
protect against faults caused by the lmpact of natural galactic cosmic rays
and energetic protons. The process of radiation-hardening components gen-
erally lowers the clock speed and increases the required power of a compo-
nent. as well as taking a number of years to complete. This time taken to
radiation-harden a component guarantees that it will be long out-of-date
by the time that it can be used in space. and has a high cost that must
be distributed over a relatively small number of customers. Typically, at
any given time, radiation-hardened components have a power:performance
ratio that is an order of magnitude lower. and a cost that is several orders
of magnitude higher than contemporary commodity off-the-shelf (COTS)
components.

The REE project is therefore attempting to use COTS components in
space. recognizing that faults will occur in these components. and handling
these faults in software. The project consists of three initiatives: applica-
tions, computing testbeds, and system software. The purpose of the appli-
cations initiative is to demonstrate that the unique high-performance low-
power compiting capability developed by the project enables new science
investigation and discovery. In order to do this, five Science Application
Teans (SATs) were chosen to develop scalable science applications, and to
port these to REE testbeds running REE system software. The needs of
the applications also lead to requirements on the system software, and en-
sure that the hardware and system software meet the needs of the NASA
spaceborne applications community.

Under the testbeds initiative, a system designed to deliver 30 MOPS/watt
is currently being built. to be delivered in Jannary 2000. This testbed con-

sists of 10 CO'TS processors councected by a COTS network fabric. Through
Futnre REDPs. the project will obtain additional testbeds that perform taster
while nsing less power. Criteria that are required of the testbeds are: consis-
rency with rapid transfer (18 month or less) of new Earth-based technologies
to space. no single point of failure, and graceful degradation in the event of
hardware failure.

The system software initiative will provide the services required to let
the applications make fill use of the hardware while assuring reliable opera-
tion in space and providing an easy-to-use development environment. Much
like the hardware. the system software is intended to use commercial com-
ponents as much as possible. The major challenge for the system software is
to develop a middleware layer between the operating system and the appli-
cations which accepts that both permanent and transient faults will occur
and provides for recovery from them.

Five teams comprise the first round of SATs:

o Gamma-ray Large Area Space Telescope (GLAST): This team. led
by Prof. Peter Michelson (Stanford) and Prof. Toby Burnett (U. of
Washington) will examine detection of gamma rays in a sea of back-
cround cosmic rayvs (about 1 in 10,000 events will be a gamma ray),
and reconstruction of the gamma-ray trajectory. '

e Mars Rover Science: Dr. R. Steven Saunders (JPL) leads this team,
which has two applications. First. texture analysis and image seg-
mentation are used to identify various materials on Mars for further
scientific analysis. Second, images obtained from a stereo camera are
analyzed for use in autonomous navigation.

e Next Generation Space Telescope (NGST): Led by Dr. John Mather
(Goddard Space Flight Center - GSFC). this team also has two ap-
plications. The first is to perform multiple fast reads of the charge
coupled devices (CCDs) which take the telescope images in order to
eliminate or reduce the effect of cosmic rays which hit these CCDs
during an exposure. The second is to perform fine optical control by
using a wave front sensing algorithm to control a deformable mirror.

e Orbiting Thermal Imaging Spectrometer (OTIS): This team is led by
Prof. Alan Gillespie (U. of Washington). They are designing an ap-
plication to take hyperspectral imaging data and retrieve temperature
and emissivity. as well as performing spectral matching and nnmixing,

then himage classification.

o Solar Terrestrial Probe Project (STD) This ream. led by Dr. Steven
Currds (GSEFCO). is examining nsing Heets of spacecraft for two appli-
cations: radio astronomical imaging and plasma moment analysis.

All of these applications take advantage of large amounts of computing, as
well as power:performance ratios that are at least an order of magnitude
above those available in today's spacecraft. They are attempting to imple-
ment and test new approaches to science data processing and autonomy.
The science applications will be used to test. evaluate, and validate can-
didate architectures and system software. They are generally MPI programs
which are not replicated, and therefore, can take full advantage of the com-
puting power of the hardware. (However, REE also intends to support Triple
Modular Redundancy (TMR) in software for smaller applications that re-
quire high reliability, as opposed to high availability.) As the processors are
COTS components, they are not radiation-hardened. and will suffer from
faults. (Since memory will be error-detecting and correcting, faults to mem-
ory will be largely scereened.) Most of the transient faults will be single event
upsets (SEUs); their presence requires that the applications be self-checking,
or tolerant of errors. SEUs affecting data are particularly troublesome be-
cause they typically have fewer obvious consequences than an SEU to code
the latter would be expected to cause an exception.

1.2 Fault Tolerance via Software

It is in this context that we describe and test the mathematical background
for using checksum methods to validate results returned by a numerical
subroutine operating in an SEU-prone environment. Due to the nature of
scientific codes, much of their time is spent in certain common numeri-
cal subroutines - - as much as 70% in one NGST application, for example.
Protecting these subroutines from faults provides one ingredient in an over-
all software-implemented fault-tolerance scheme. Along the lines laid out
above, our general approach has been to wrap existing parallel numerical
libraries (ScalLAPACK., FFTW) with fault-detecting middleware. We can
treat subroutines that return results satisfying a necessary condition having
a linear form; the checksum tests compliance with this necessary condition.
These checksium schemes are called algorithm-based fault tolerance (ABFT).
Here we discuss the theory and practice of setting numerical tolerances to
separate errors caused by a fault from those inherent in finite-precision nu-
merical caleulations.

To separate these two classes of errors, we employ well-known bounds on
error-propagation within linear algebrale algorithms. These bounds provide

a waxinmun error that is to be expected dune to register effects: any error i
excess of this i taken to be the product of a fault. Adapting these bounds
to the ABFT setting vields a series of tests having different efficiency and
accuracy attributes.

Characteristics of a given scheme are concisely expressed using the stan-
dard receiver operating characteristic (ROC) curve. For a given error toler-
ance, a certain proportion of False Alarms (numerical errors tagged as data
faults) and Detections (data faults correctly identified) will be observed. The
ROC plots these two proportions parametrically as the tolerance is varied;
this describes the performance achievable by a certain detection scheme and
provides a basis for choosing one scheme over others. Two series of tests are
described here. The first shows the general effectiveness of the linear ABFT
schemes we have proposed. and the second verifies the correct behavior of

our parallel implementation of them.

1.3 Notation

We close this introduction by introducing some useful notation. Matrices
and vectors are written in uppercase and lowercase roman letters: AT is the
transpose of the matrix A (conjugate transpose for complex matrices). Any
identity matrix is always [: context provides its dimension. 4 is orthogonal
if 447 = I. A square matrix is a permutation if it can be obtained by
re-ordering the rows of I. The size of a vector v is measured by its p-
norm. a non-negative real number [v]|,: similarly for matrices A. See [3]
{hereafter abbreviated GVL). sections 2.2 and 2.3, for the definitions. The
submultiplicative property of p-norms implies that ||AB]|, < [[A],[|B]], and
stinilarly for vectors.

2 General Considerations
In this paper we are concerned with these operations:
e Product: find the product AB = P, given A and B.

o LU decomposition: factor 4 as A = PLU with [P a permnutation
matrix, L unit lower-triangular. and U7 upper-triangular.

e Singular value decomposition: factor A as A = 7DV, where D is
diagonal and U and V' are orthogonal matrices.

e System solution: solve for o in Ar = b when given A and b

N3

e Marrix inverse: given A tnd 3 osuch that AB = [,

o Fourier transform: given . And y such that y = W where Wis the
matrix of Fourier bases.

e [nverse Fourier transform: given y. find x such that » = W'Tg/.

Although standard numerical packages provide many other routines, the
ones above were identified by science application teams as the being of the
most interest, partly on the basis of amount of time spent within them.

Each of these operations has been written to emphasize that some linear
relation holds among the subroutine inputs and its computed outputs; we
call this the postcondition. For the product, system solution, inverse, and
transforms, this postcondition is necessary and suflicient, and completely
characterizes the subroutine’s task. For the other two, the postcondition is
only a necessary condition and valid results must enjoy other properties as
well. In either case, identifying and checking the postcondition provides a
powerful sanity check on the proper functioning of the subroutine.

Before proceeding to examine these operations in detail. we mention two
points involved in designing ABFT techniques. Suppose for definiteness that
we plan to check one m x n matrix. Any reasonable checksum scheme must
depend on the content of each matrix entry. otherwise some entries would not
be checked. This implies that simply computing a checksum requires O(mn)
operations. Checksum ABFT schemes thus lose their attractiveness for op-
erations taking O{mn) or fewer operations (e.g. trace, sum. and l-norm)
because it is simpler and more directly informative to achieve fault-tolerance
by repeating the computation. The second general point is that. although
the postconditions above are lincarly-checkable equalities. they need not be.
For example, the largest eigenvalue of A is bounded by functions of the 1-
norm and the co-norm, both of which are easily computed but not linear.
One could thus evaluate the sanity of a computation by checking postcon-
ditions that involve such inequalities. None of the operations we consider
requires this level of generality.

The posteonditions we consider generically involve comparing two linear

maps. which are known in factorized form
)
LiLy---L,=RRy-- R, . (H
This check can be done exhanstively via n lincarly independent probes for an

n x nosystem. Of conrse, exhaustive comparison would typically introduce
about as much computation as would be required to recompute the answer

6

from serateh. On the other hand. a typical fande to data fans out across the

matrix ontputs, and a single probe would be enough to carch most errors:
) /
" <

L{Lg'”[/pll,':R;Rg"-un’ (\.))

for some probe vector w. This is the approach originally recommended by
Abrahamn and his colleagues [4] to implement ABFT in systolic arrays. It
has since been extended and refined by several researchers {1. 2, 5, 8].
There are two designer-selectable choices controlling the numerical prop-
erties of such an ABFT system: the checksum weights w and the comparison

method indicated above by Z. When no assumptions may be made about
the operands, the first is relatively straightforward: the elements of w should
not vary greatly in magnitude so that results figure essentially equally in the
check. (In particular, w should be everywhere nonzero.) In what follows,
we let w be the vector of all ones: our implementation allows any w to be

supplied by the user.

3 Error Propagation

After the checksum vector, the second choice is the comparison method. As
stated above, we perform comparisons using the corresponding postcondition
for each operation. To develop a test that is roughly independent of the
matrices at hand, we use the well-known bounds on error propagation in
linear operations. In what follows. we develop a test for each operation of
interest. For each operation, we cite a result bounding the numerical error in
the computation’s output, and then we use this bound to develop a corollary
defining a test which is roughly independent of the operands. Throughout,
we use u to represent the numerical precision of the underlying hardware;
it is the difference between unity and the next larger Hoating-point number.

It is important to understand that the error bounds given in the results
are qualitative and determine the general characteristics of roundoff in our
checksum implementations. The estimates we obtain in this section are
bounds based on worst-case scenarios, and will typically predict roundoft
error larger than practically observed. (See GVL, section 2.4.6, for more on
this outlook.) In the ABFT context, using these bounds unecritically would
mean setting thresholds too high and missing some fault-induced errors.
Their value for us, and it is substantial, is to indicate how roundoff error
scales with different inputs. This allows ABFT routines the opportunity
to factor out the inputs, vielding performance that is more nearly input-

-1

independent. Of course, sote probleme-specific tuning will likely improve
performance. Our goal is to simplify this tuning process as much as possible.

Result 1 Let P = mult(A, B) be computed using a dot-product, outer-
product, or gaxpy-based algorithm. The error matriz E = P — AB satisfies

1N« < nf Al Bl xu 3)
Proof. See GVL, section 2.4.8. n
Corollary 2 An input-independent checksum test for mult is

d = Pw — ABw (4)

dfl o/ (1Al IBllscllwlix) < Tu (5)

where T 1s an input-independent threshold.

The test is expressed as a comparison (indicated by the z relation) with a
threshold; the latter is a scaled version of the floating-point accuracy. If the
discrepancy is larger than 7u, a fault would be declared, otherwise the error
is explainable by roundoff.

Proof. The difference d = Ew so, by the submultiplicative property of norms
and result 1,

ldllx < [El<lwlx < nl Al IBlxlw]xu

i

and the dependence on A and B is removed by dividing by their norms.
The factor of n is unimportant in this calculation, as noted in the remark
beginning the section. O

For the remaining operations, we require the notion of a numerically
realistic matrix. The reliance of numerical analysts on certain proven algo-
rithins is based on the rarity of certain pathological matrices that cause. for
example, pivot elements in decomposition algorithms to grow exponentially.
Even algorithms regarded as stable and reliable can be made to misbehave
when given such unlikely inputs. Because the underlying routines will fail
under such pathological conditions. we may neglect them in designing an
ABFT system: such a computation is doomed even without faults. Accord-
ingly. the results below must assume that the inputs are numerically realistic
to obtaln usable error bounds.

Result 3 Lot (D L) = Tu(A) be computed using a standard LU decompo-
sition algorithm with partial pivoting. The backward error matriz E defined
hy A+ E = PLU sabisfies

|E|lx < 8n’p|[Alxu (6)

where the growth factor p depends on the size of certain partial results of
the caleulation. and s bounded by a small constant for numerically realistic

matrices.

Proof. See GVL, section 3.4.6. U

We note in passing that this is close to the best possible bound for the
discrepancy. because the error in simply writing down the matrix A must
be of order 1| 4llu.

Corollary 4 An input-independent checksum test for lu as applied to nu-
merically realistic matrices is

d=PLUw - Aw (7
]/ (1Al fJwll) = Tu (8)

where T is an input-independent threshold.

Proof. We have d = Ew so. by the submultiplicative property of norms and
result 3.

ldll s < E[xllwllx < 871,3/)H‘Aiixllwiixu

As before, the factor of 8n7 is unimportant in this calculation. For numer-
ically realistic matrices, the growth factor p is bounded by a constant, and
the indicated test is recovered by dividing by the norm of A.]

value decomposition algorithm. The forward error matriz E defined by A +
E =UDVT satisfies
A

1El2 < pllAll2u (9)

where p is a constant not much larger than one for numerically realistic

matrices A.

Proof. See GVL, section 5.5.8. 0

Corollary 6 An input-independent checksum test for svd as applicd to nu-

merically realistic matrices is

d=UDVTw - Aw (10)
ldll2/ (| Allaflwlf2) < 7u (11)

where 7 is an input-independent threshold.
Proof. We have d = Fw so, by the submultiplicative property of norms,
ldllz < [Ell2][w]l2 < plAll2fjwlj2u

and the dependence on A is removed by dividing by its norm. The constant
p is negligible for numerically realistic matrices.]

Corollary 7 An input-independent checksum test for svd as applied to nu-
merically realistic matrices is

d=UDVTuw — Aw (12)
[l /(|Allx el) = Tu (13)

where T is an input-independent threshold.

Proof. By corollary 6, the check above with the 2-norm in place of the oc-
norut is an input-independent checksum test. But since these two norms are

equivalent in that

lwllse <l < Vallw]ix

(1/Vn)ll Al < [|Allz < Vml|Allx

(see GVL sections 2.2.2 and 2.3.2), the two tests are also equivalent up to

negligible constants.]

Result 8 Let B = inv(A) be computed using Gaussian elimination with
partial pivoting. The backward error matriz E defined by (A + E)™! = B

satisfies
1E|lx < 80"p [Al xu (14)

with p as in result 3.

Proof. Sce GVL. section 3,46, which detiunes the backwards error tor the lin-
car system solution Ar = b, Since 471 is calaudated by solving the multiple
right-hand-side problem A4~ = [the bound given there on [|Ell . applies
here with the same growth factor p. (This growth factor depends only on the
pivots in the LU factorization which underlies the inverse computation.) [

Corollary 9 An input-independent checksum test for inv as applied to nu-

merically realistic matrices is

d=uw— ABw (15)
e /(AT 1A e lw) Z 7u (16)

where T 1s an input-independent threshold.
Proof. See the appendix. O

We remark that this bound on discrepancy, larger than that for lu. is the
reason maftrix inverse is numerically unstable. We close this section with
tests for Fourier transform operations. The n x n forward transform matrix
W contains the Fourier basis functions. recall that W/\/n is unitary.
Result 10 Lety = ££t{z) be computed using a decimation-based fast Fourier
transform algorithm; let y = W be the infinite-precision Fourier transform.

The error vector e = § — y satisfies

I~ < nlogynlrxu (17)

it
le

0

Proof. See the appendix.
Corollary 11 An input-independent checksum test for ££t is
d=(j—Wr)Te (18)
]/ (]l 1]l) < 7u (19)
where T 1s an input-independent threshold.
Proof. This follows from result 10 after neglecting the leading constant. [

Corollary 12 An input-independent checksum. best for 1££t is

d={-WTyTw (20)
| >
di/ Uyl llwllse) < Tu (21)
where 7 1s an input-independent threshold.
Proof. The proof. very similar to corollary 11, is omitted.]

t

1

Recommended Choecksium Tests

Algorithn A 7 7 7y Note
milt P—AB [A]B]| il [P
lu PLU — A Al |PLU|| | Aw] 7| easier
than o
svd UDV - A 14l 1DVT) I Aw]| o) easier

than o9

iny [—AB [A|ATY JABI JAIBw] [ABw]

useless
fft (y - Wwa)T x|l — - result is
: a vector
ifft (& - WTy)T iyl — — result is
a vector

Table 1: Algorithms considered here, and recommended checksum tests.

4 Implementing the Tests

It is straightforward to transform these results into algorithms for error
detection via checksums. The principal issue is computing the desired matrix
norms efficiently from results needed in the root calculation. For example,
in the matrix multiply. instead of computing ||A|l||B]], it is more efficient
to compute ||C']| which equals ||AB]| under fault-free conditions. By the
submultiplicative property of norms, [[AB]] < || A]]||Bl. so this substitution
always underestimates the upper bound on roundoff error. leading to false
alarms. On the other hand, we must remember that the norm bounds are
only general guides anyway. All that is needed is for |ABI| to scale as does
AJlIBil: the unknown scale factor can be absorbed into 7.

Taking this one step farther, we might compute |Cw|| as a substitute
for ||A|l||Bllljw]|. Here we run an even greater risk of nunderestimating the
bound. especially if w is nearly orthogonal to the product. so it is wise to
nse instead A|w| + [|Cw]l for some problem-dependent A. Extending this
reasoning to the other operations yields the comparisons in table 1. The

|
i
i

error criterion used there always proceeds from the number & = ||Awl] for
the indicated difference matrix A: this matrix is of course never explicitly
computed. In addition to the obvious

(3]
b

T0: 3/ |lwl| Zru (trivial test) (

12

we provide three other comparison tests

T Zru (ideal test) (23)
T2: 5/(oalwl]) € Tu (approximate matrix test) (24)

o > . e
T3: 3/ (Aljwl + a3) < T {approximate vector test) (25)

The ideal test is the one recommended by the theoretical error bounds. and
is based on the supplied input arguments, but may not be computable. In
contrast, both approximate tests are based on computed quantities, and may
also be suggested by the reasoning above. The matriz test involves a matrix
norm while the wector test involves a vector norm and is therefore more
subject to false alarms. (Several variants of the matrix tests are available
for these operations.) We note that the obvious vector test for inv uses
ABuw. but since B = inv(A), this test becomes essentially equivalent to
the trivial test. We therefore suggest using the vector/matrix test shown in
the table. Finallv. the ideal tests T1 for the Fourier transforms need only
the norm of the input. which is readily calculated. Consequently, other test
versions are not stated for these operations.

Clearly the choice of which test to use is based on the interplay of compu-
tation time and fault-detection performance for a given population of input
matrices. Because of the shortcomings of numerical analysis, we cannot pre-
dict definitively that one test will outperform another. The experimental
results reported in the next section are one indicator of real performance,
and may motivate more detailed analysis of test behavior. Performance in
application codes will be another criterion for choosing tests.

5 Results: Simulated Fault Conditions

In rhis section we show results of Matlab simulations of the proposed check-
sum tests. These simulations are intended to verify the essential effectiveness
of the checksum technique for ABE'T, as well as to sketch the relative behav-
iors of the tests described above. Dite to the special nature of the population
of test matrices, and the shortcomings of the fault insertion scheme, these re-
sults must not be taken as anything but an estimate of relative performance,
and a rough estimate of ultimate absolute performance.

We briefly describe the simulation setup. In essence a population of
random matrices is used as input to a given computation; faults are injected
in half these computations. and a checksum test is used to attempt to identify

13

Average-case Matrices. All Faults

ROC. Muitiply Al Faults includad ROC: Invarse. All Faulls Inciuded

- - e - e e . R s
74-—4—.,‘«~»"'['M M
Dk PR r-"y‘ e - bETS B
> s .
Py <
78" e
e . 4
15t sor
5z - 4 o5m 4
/ B
04t 4 EErS
. M
234/ 93%
2t . iwl a2 ; wi
N COAIBHW - - TALIBI bwi
ERrS : ABw a1 | 1A} 1Bhat iwl
. TeIABwW - T + 1AWl iBhatt
o 91 a2 03 04 a5 08 o 0.8 o8 1 @ 2t 02 03 04 25 085 a7 28 2.9 1
Pfa Pfa
RGC: LU Decomposttion. All Faults inciuded
LI
e i Py
r,_<«" N e 4]
ot T
- ,,,("/ = P o 4
o o
P ! - -t
L E 73 e -4
e
337
rer ! wt iwt 1
. Al iw ’ 1A]iwt
ars a {Anatt fwi - 1Anatt iwl
N 1+ iAhat wi 1+ lAhat wl
5 91 52 93 24 9% 16 D7 28 28 '] i 02 02 04 2% 05 EH EX] R '
> 2
F fa [f &

Figure 1: ROC for random matrices of bounded condition number, including
all faults.

the affected computations. Random test matrices A of a given condition
number & are generated by the rule

A=10°UD,VT . (26)

The random matrices U and V' are the orthogonal factors in the QR fac-
torization of two square matrices with normally distributed entries. The
diagonal matrix D, is filled in by choosing random singular values, such
that the largest singular valite is unity and the smallest is 1/x. These ma-
trices all have 2-norm equal to unity: the overall scale is set by a which is
chosen uniformly at random between -8 and +8. A total of 800 64 x 64
matrices (forty applications of the rule (26) for each s in {21.....229}) is

processed.

b

Average-case Matrices, Significant Faults

RCC Mulliply. Excluding Faults « t 08-08 ROC inverse. Excluding Faults < 1 Ge-08
e e e B I T I PP
S - 5 09m
Py - Py
V8 28
3 - 37w
15y 26
5 35 4
) - Jar 4
2 ~f BRTS -
vz S 1 gz - wi 1
. . AU W N . AT 181 hwi
3i- ioa taBiw 51e [1Al iBhatt twi R
1elABw . - 1+ 1Awt iBhatt
3 Ll 2 03 34 25 08 a7 08 o9 ’> 91 22 a3 94 as £33 3 98 o9 1
Pfa Pfa
RCC. LU, Excluding Faults < 1.0e-08 ROC: SVD, Excluding Faults < 1.06-08
A ALAAAAAMAALE LA NS AN (2 L EK 48 85N Ta A 1
i F; o
NS e 1o LTI
> . T ;o= e
P : P -
1o RN <
* yim 4
vz
I 4 sk 4
- . 4
14 B E
SIS ‘13.’
52 . " - 32 . iwh
1A iwl . Al iwl
91- s Ahati twt a1t » iAnatl twi 4
1+ lAhat wi . 1+ 14hat wi
3 a1 a2 23 04 35 L] ar 28 23 1 2 a1 22 a3 24 LR 36 27 18 a9 1
> >
[jzz [ju,

Figure 2: ROC for random matrices of bounded condition number, excluding
faults of relative size less than 107°.

Faults are injected in half of these runs (400 of 800) by first choosing a
matrix to affect, and then flipping exactly one bit of its 64-bit representation.
For example, if a call to mult is to suffer a simulated fault, first A or B is
selected at random, and then one bit of the chosen matrix is toggled. If 1u
is to suffer a fault, one of A, L. or U is selected and the fault is injected. If A
was selected, one can expect the computed L and U to have many incorrect
elements: if L was selected, only one element of the LU decomposition would
be in error. This scheme is intended to simulate errors oceurring at various
times within the computation.

Next. cach of the four tests described above is used to identify faults; for
a fixed 7 this implies observing a certain false alarm rate and fault-detection

15

7 Across Experiments
Average-Case Worst-Clase
All Sig. All Sig.
mult 0.86 1.00 0.63 092
inv 0.78 1.o0 0.32 0.50
lu 0.60 LO0 043 090
svd 0.78 0.97 0.60 087
Mean 0.76 0.99 0.50 0.80

Table 2: Fault detection probability when no false alarms are permitted.
Worst-case results are taken from the Matlab gallery matrices. Results
when all faults must be detected, and when only significant faults must
be detected, are shown.

rate. The pair (P, P;) may be plotted parametrically versus 7 to obtain
an ROC curve which illustrates rhe performance achievable by a given test.
See figure 1. In these figures. 70 and T3 are the solid blue lines with dots,
with T0 in dark blue lying below 7'3. T2 is shown in red asterisks, and T'1,
the optimal test, in green crosses.

Of course, some missed fault detections are worse than others since many
faults occur in the low-order bits of the mantissa and cause very minor
changes in the matrix. Accordingly, a second set of ROCs is shown in
figure 2. In this set, faults causing a minute perturbation (less than one part
in 107", about the accuracy of single-precision floating point) are screened
from the results entirely. This curve is more realistic for our applications.

We may make some general observations about the results. Clearly T'0,
the un-normalized test. fares poorly in all experiments. This illustrates
the value of the results on error propagation that form the basis for the

normalized tests. Generally speaking,
TO= T3 <T2=T1 . (27)

This confirmus theory. in which T'1 is the ideal test and the others approxi-
mate it. In particular. T1 and T2 are quite similar because generally only
an enormous fault can change the norm of a matrix — these cases are easy
to detect.

Further., we note that the most relevant part of the ROC curve is when
Pr, = 0: we may in fact be interested in the value P~ defined to be P,
when Py, = 0. P* is the detection rate when no false alarms are permitted;
it is sumnarized for these experiments in table 2. The first two columns of

16

ROC: Testing Parallel Operition

45 ot s s i ation 4§ 19yttt gavary nati s HO R Avmaion 4 T e ity Sialneas
-
e |
35
&0k
370
3
=
. |
sar L
F3S 2.2k
. ot]
) 01 32 03 X o5 28 (¥4 08 59 t 9 91 22 53 e 0.5 06 5.7 (1] 09 1
¥ aima Alasms Faksa Alarms
FOC phot 105 LU dECompasaion of 1 0a- 10 pertured galiery mainces FOC plol or sngular «ahie H6compostion of 1 3410 parturbed gakery malnces
. — — v
s i 5

Figure 3: Parallel implementation checked by Matlab computation.

this table come from the data in figures 1 and 2: the other columns are from
a “worst-case” matrix population taken from the Matlab gallery matrices.
Under the average-case test conditions, about 99% of faults could be de-
tected with no false alarms; this level of performance would seem adequate
for REE purposes. In worst-case — and no science application should be
in this regime — effectiveness drops to about 830%. This shows that fault
detection will be more effective for numerically well-posed applications.

6 Results: Fault-free parallel operation

In our parallel implementation of the checksum procedures we use the ScaLA-
PACK routines PDGEMM for mult. PDGETRF for lu. PDGETRI for inv, and
PDGESVD for svd. For mult. we use the checksum test T2 for reasons of com-

putational cost. as the test requires only the calenlation of the noruy of the
resultant matrix product. For Tu and svd, we cmploy the ideal checksum
test T'1, as in these cases the norm of the matrix can be calculated before
the factorization is performed in place. Our choice of checksum test for inv
is complicated by the fact that PDGETRI requires that the input matrix al-
ready be in its LU-factorized form. We therefore employ a modified version
Awll: Bis readily available as

of the checksum test 73, in which oy = || B]]]
the result of the computation, and Aw can be obtained by multiplying w
successively by U, L, and P.

We note that in our implementation we consider the possibility that in-
duced faults could affect the calculated norms, thereby compromising the va-
lidity of the checksum test. In order to prevent erroneously large norms from
eliminating errors from detection, the routines compare the norms against
the system dependent maximum double precision floating point value; de-
tection of a norm that exceeds that value results in an error being declared.

In order to address numerical issues concerning our implementation of
the checksum procedures, we briefly examine some characteristics of the
implementation. Shown in figure 3 are certain ROC curves for the four
operations we have considered. In contrast to the results just reviewed. these
curves were generated by checking ScaLAPACK computations with Matlab.!
In this test we use randomly perturbed matrices from the Matlab gallery
selection. These matrices are generally ill-conditioned or poorly scaled, but
serve as a demanding test set to check our routines against a known standard.
In this case. for simplicity. the overall scale parameter o = 0 and a fixed
perturbation scale € = 10719 was used.

This time. identical matrix operands are given to Matlab and to our
Scal, APACK implementation. Faults are not injected by modifying operands
because our objective is to verify the correct numerical operation of our sub-
routines. Each system computes the full result matrix: these are combined
with the ScalL APACK checksum comparison to form an ROC as follows. We
declare that an error has occurred when the two full results differ by more
than a fixed tolerance (1071 in these experiments). An error is declared to
have been detected or not according to whether a checksuin discrepancy was
found bv the ScalL APACK implementation. {The Matlab implementation
does not compute a chiecksum; it is used only to find the full result matrix.)
With these definitions. a false alarm. for example, means that ScaLAPACK
found a checksum discrepancy, but no significant discrepancy was present in

‘Matlab uses LINPACK ZGEDI/ZGEFA for inv and lu. and ZSVDC for svd. For mult,
Matlab uses a straightforward inner product implementation with nested loops. (61

I8

the result of the computation. The ROC thus serves as a chieck, via Matlab,
on the numerical characreristics of our ScalLAPACK implementation. In
doing these tests. the comparison rule 70 was used: this has smaller conse-
quences than in the previous section because most of the perturbed gallery
matrices have roughly unit norm.

These curves were generated by sweeping the threshold 7 used in the
ScalLAPACK T0 test from 0 to oc. It is clear from the curves that there is
excellent agreement between the ScaLAPACK and Matlab versions of mult,
1u, and svd. Indeed, when the matrix is badly scaled. ill-conditioned. or nu-
merically unrealistic — causing ScalL APACK and Matlab to differ according
to the full answer — ScaLAPACK finds the error in the checksum calcula-
tion also. In essence, the message is: if the computation did not succeed,
the checksum test discovers it. Because of the additional instability of the
inverse algorithm, ifs results are less definite. One explanation is that the
checksum test is missing some errors that occur in the computed inverse;
this needs further investigation.

7 Conclusions

Theoretical results bounding the expected roundoff error in a given computa-
tion provide several types of input-independent threshold tests for checksum
differences. The observed behavior of these tests is in good general agree-
ment with theory. and readily computable tests are easy to define. All the
linear algebra operations considered here (mult. lu, inv. and svd) admit
tests that are effective in detecting faults at the 99% level on typical matrix
inputs. Tests of the numerical characteristics of our parallel implementation
of the fault detection schemes indicate excellent agreement with another
numerical package for most operations, except in cases when the matrix is
badly scaled, ill-conditioned, or numerically unrealistic. In those cases, the
schemes detect an error in the checksum calculation.

Test programs calling our parallel implementations have been installed
on the REE project testbed. where they can be tested under simulated fault
conditions. The fault injector is designed so that in can simulate radiation-
induced SEUs affecting memory, registers, code. and the stack. Of the
operations described here, mult and £ft have both been tested not only
nnder the protection of ABFT schemes, but also within a software framework
such that programs which have crashed or hung are restarted antomatically.
This works in conjunction with the ABFT error detection: if an error is
detected. and the computation does not yield correct results after o set

19

number of retries, the error handling scheme aborts the program so that it
can be automatically restarted.

The ABFT f££t routines have also been integrated into the image texture
analysis and segmentation application which is part of the Mars Rover Sci-
ence project. This application is being tested with simulated fault injections
on the REE project testbed under the software framework described above,
both with and without the ABFT routines. While conclusive results are
not yet available, preliminary testing indicates that the checksum scheme
effectively protects the Fourier transform operations within the application
from SEUs.

We expect that continued integration of ABFT routines with the various
science applications will lead to these applications being resistant to SEUs
throughout large portions of the computation. This is of course just one of
the protections that will be needed to use COTS computers in space, but it
1s an essential one.

Acknowledgment

This work was carried out by the Jet Propulsion Laboratory. California
Institute of Technology. under contract with the National Aeronautics and
Space Administration.

References

1} D. L. Boley, R. P. Brent, G. H. Golub. and F. T. Luk. Algorithmic
fault tolerance using the Lanczos method. SIAM J. Matriz Anal. Appl..
13(1):312-332, 1992.

12} M. P. Connolly and P. Fitzpatrick. Fault-tolerent QRD recursive least
squares. [EE Proc. Comput. Digit. Tech., 143(2):137-144, 1996. IEE,
not [EEE.

3] G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins
Univ.. Baltimore. second edition. 1989.

[4] K.-H. Hnang and J. A. Abraham. Algorithin-based fault tolerance for
matrix operations. [IEEE Transactions on Computing, 33(6):518-52%.
1984

51 FU T Lok and H. Park. An analysis of algorithm-based fault tolerance

techniques. Journal of Parallel and Distributed Computing, 5:172 184,

198X,

60 MarhWorks, 14 April 1999, Personal communication via e-mail from J.

Regensburger.

71 REE project, March 1999. -Project Plan: Remote Exploration and
Experimentation (REE) Project,” available at www~-ree.jpl.nasa.gov.

8] Wang and Jah. Algorithm-based fault tolerance for FFT networks. [EEE
Transactions on Computing, 43(7):849-854. 1994.

Appendix

In this section we present some of the proofs that were passed over in the
text.

Proof of Corollary 9. Note that d = Aw where A = [— A(A+ E)~!. Some
algebra is necessary to extract the error E from A. Using the Sherman-
Morrison formmla (GVL section 2.1.3) to rewrite the inverse of A + £ we

obtain

A=[—-AA AN T+ EAYITEATY
= ([+EA™HY T EA! (28)

For numerically realistic matrices, A dominates E and the first factor is
negligible. Heuristically. this is because £ < A implies EA™! <« A4 = 1,
collapsing that factor to [. More formally, inverting a numerically realistic
matrix produces an error matrix E such that for any vector v. |[Ev|| <«
|Av|l otherwise the backward error £ would be comparable to 4. Since

¢ is arbitrary and A is invertible, we may let » = A~y obtaining that
|EA]| < {Ju]l = [[{u]]. showing that the operator EA™! is dominated by

[. Therefore we may neglect the first factor and the norm of the error is
bounded by

1] = Aw]x
< 1B A7 i el
< 8n%p [Al 14 ol on (29)

using the submultiplicative property of norins. As before, the factor of
sn? is unimportant in this calenlation. Invoking the assumption that A is a
munerically realistic matrix allows us to neglect the growth factor p, yielding
rhe indicated test.]

Proof of Result [0, Decimation algorithins are based on compact factoriza-

tions of the n < nounitary fransforny matrix W
y o= ”.N i’V\,’ -l Wvl €

where N = log, n. and each Wj, performs one bank of n/2 “butterfly” op-
erations. The infinite-precision computation may therefore be written as a

recurrence
Ip =&
(30)
Zeer = Wiz (B20)
where y = zy. The finite-precision computation finds, in turn,
Zo =1
. S (31)
Zpoy = mult(Weyp, 2) (K> 0)
and § = Zy. The proof proceeds by developing a recurrence for the size
(always expressed in oc-norm) of the error vector
Chol = Tkt — Tkl
= Whar zp ~oult(Wiop, 2e)
=Weoom — (Weir 5k + é)
=Wiirep — e (32)

where by Result 1. and the observation that exactly two entries of each row
of W are nonzero, €; satisfies

|
1
< 20zl + flexlDu (33)

Combining with (32) yields the bound

lew]l < Wi Hlewll + 20F =l + flexlDu
= (1 +2u)ller]| + 2zplju . (34)

[

Since W3 =2, [zl < 28|x)f, and we obtain the recurrent upper bound

egll =
fleall =0 (35)

For any reasonable Hoating-point system, 1 + 2u < 2. Using this, it is easy
to see o] < k27 Lrllu. establishing the claim

1

1

lexll < nlognixziu. 0

